
A Java implementation of a multisignature scheme

V. Gayoso Martínez, L. Hernández Encinas, and A. Martín Muñoz
Information Processing and Cryptography (TIC), Institute of Physical and Information Technologies (ITEFI)

Spanish National Research Council (CSIC), Madrid, Spain

Abstract— Multisignature protocols are digital signature
schemes that allow a group of users to sign a message
so that the signature thus produced is valid only if all the
members of the group participate in the signature process. In
general, these schemes need the collaboration of a Trusted
Third Party, which computes and securely stores some of the
parameters associated to the scheme.

In this work, we present our results and conclusions
after implementing as a Java application a multisignature
scheme based on the Integer Factorization Problem and the
Subgroup Discrete Logarithm Problem.

Keywords: Authentication, Digital signatures, Java, Multisigna-
tures, Trusted Third Parties

1. Introduction
In multisignature schemes, a group of users, typically

denoted as G, signs a document such that the signature is
valid only if all the members of the group take part in the
process and the signature verifies a specific condition. These
schemes have a direct application in corporate scenarios for
signing contracts, validating agreements, etc.

From a naive point of view, the easiest way to carry
out a multisignature consists in computing the individual
signatures of all the signers and concatenating them, so the
multisignature is composed of the sequence of individual
signatures. However, this method is not practical for large
groups of users, since the length of the multisignature is
proportional to the number of signers.

The first practical multisignature scheme was proposed in
[1], where a modification of the RSA cryptosystem was used
in such a way that the RSA module consisted in the product
of three primes instead of just two. In [2], another scheme
was proposed where the signature length is similar to the
length of a simple signature and shorter than the signature
obtained from the scheme presented in [1]. However, this
scheme can be used only if the cryptosystem is bijective,
making it difficult to implement. Other proposals based on
the RSA cryptosystem are, for example, those described in
[3], [4], [5], [6], [7].

Regarding multisignature schemes based on the Discrete
Logarithm Problem, in the scheme described in [8] the group
of signers must cooperate in order to sign the message and
send the signature to a given group of verifiers, but only
through the union of all the verifiers it is possible to validate
the multisignature. In addition to that, when producing the

multisignature the signers not only must use their own
private keys, but also the public key of each verifier, which is
an important limitation [9], [10]. In the scheme proposed in
[11], a multisignature can be performed only if the verifiers
of the signature belong to a previously specified group, but
apart from that limitation the scheme has some weaknesses
[12], [13].

From a more general point of view, a multisignature
scheme for a generic model of public key is presented in
[14]. In that model, each one of the signers must have a
certified public key with its corresponding private key, which
must be generated by the signer himself. The signers interact
completing a number of rounds, where in each round each
signer receives a message, performs several calculations and
sends the resulting message to the next signer. In this generic
model, it should be computationally infeasible to forge a
multisignature if there exists at least one honest signer in
the group.

In comparison with the previous proposals, the multisig-
nature scheme presented in [15] by one of the authors of
this contribution has the advantage that each signer has his
own private key, but all of them share the same public key.
Besides, the procedure is secure, efficient, and independent
of the number of signers. In addition to that, the signature is
determined by all the signers in a certain pre-established
order and the scheme allows to add new signers at the
end of the signing chain, making it easier to update old
signatures. Regarding the validation procedure, the scheme
requires the verification of a certain property involving the
signature itself, the original message, the number of signers,
and some of the scheme’s public parameters.

This work presents the results obtained when imple-
menting a modified version of the multisignature scheme
described in [15] using the Java language, where the mod-
ifications introduced have the goal of adapting the scheme
to devices with limited resources and making the signing
procedure more flexible by allowing the users to operate the
scheme in any given order.

The rest of this paper is organized as follows: In Section
2, a detailed description of the mulsignature scheme is
included. Section 3 describes the Java application developed
in order to test the feasibility of the scheme. Section 4
provides a numerical example of the parameter and signature
generation procedures. In Section 5, we offer to the readers
the experimental results obtained with our Java application.
Finally, our conclusions are presented in Section 6.



2. Description of the scheme
The security of the scheme described in [15] is based on

the Integer Factorization Problem (IFP) and the Subgroup
Discrete Logarithm Problem (SDLP).

As it is well known, the IFP can be described as follows
[16]: Given a positive integer n, find its prime factorization;
that is, write n = pe11 pe22 · · · pekk , where pi are pairwise
distinct primes and each ei ≥ 1.

Besides, the SDLP is defined as follows [16]: Let p be a
prime and q a prime divisor of p − 1. Let us consider g a
generator of the unique subgroup H of Z

∗
p of order q, and

y an element in H . The problem is that of computing the
integer x, 0 ≤ x ≤ q − 1, such that y = gx (mod p).

Let G = {U1, U2, . . . , Ut} be the group of t users
allowed to perform signatures, and T the Trusted Third
Party (TTP) managing the scheme’s parameter generation
process. The following subsections include all the details of
the multisignature scheme.

2.1 Setup phase
In this phase, T generates the system parameters, its own

private key, and the public key shared by the group. The
steps that T must complete are the following:

1) T chooses two large primes p and q, such that p =
u1rp1 +1 and q = u2rq1 +1, where r, p1, and q1 are
prime numbers and u1, u2 ∈ Z with gcd(u1, u2) = 2;
that is, u1 = 2v1, u2 = 2v2, where v1 and v2 are
prime numbers. In the original version [15], v1 and
v2 could be composite numbers; we have introduced
this modification so that the number of factors of λ(n)
(see next step) does not depend on v1 and v2, which
improves the iteration through the divisors of λ(n) in
the third step.
In order to guarantee the security of the scheme, the
bit length of r must be selected so that the SDLP of
order r in Z

∗
n is computationally infeasible.

2) T computes the values n, the Euler function φ(n),
and the Carmichael function λ(n), where n = p · q,
φ(n) = (p − 1)(q − 1) = u1u2r

2p1q1, and λ(n) =
lcm(p− 1, q − 1) = 2v1v2rp1q1.

3) T selects an element α ∈ Z
∗
n with multiplicative

order r modulo n, and that fulfils the condition
gcd(α, φ(n)) = 1. The element α can be efficiently
computed, as at this point T knows the factorization
of n and consequently it knows φ(n) and λ(n).
In practice, it is enough to find a random value g ∈ Z

∗
n

such that gλ(n) ≡ 1 (mod n) and check that none of
the 62 non-trivial divisors of λ(n) are the actual order
of g [17]. By non-trivial divisor we mean a divisor
of λ(n) different from 1 or λ(n). The number of
non-trivial divisors of λ(n) is derived from the fact
that λ(n) = 2v1v2rp1q1 and all the factors are prime
numbers. Once the value g is found, the generator is

obtained through the following computation [17]:

α = gλ(n)/r (mod n).

4) T generates a secret random number s ∈ Z
∗
r and

determines
β = αs (mod n).

5) T publishes the values n, r, α, and β, while the
elements p, q, and s are kept secret.

6) T sets up its private key by generating four random
numbers a0, b0, c0, d0 ∈ Z

∗
r .

7) T determines the shared public key for G by comput-
ing the elements

P = αa0 · βb0 (mod n) ≡ αh (mod n),
Q = αc0 · βd0 (mod n) ≡ αm (mod n),

where h ≡ (a0 + sb0) (mod r) and m ≡ (c0 +
sd0) (mod r).

2.2 User’s private key generation
In order to prevent T from impersonating any member

of G, the secret key of each user Ui is composed of four
values, two of which are only known to Ui. With that goal
in mind, the following steps must be completed:

1) Ui generates two secret integers bi, di ∈ Zr at random
and sends the values αbi (mod n) and αdi (mod n) to
T using a secure channel.

2) T computes

Ai = αh(αbi)−s (mod n) ≡ αai (mod n),
Ci = αm(αdi)−s (mod n) ≡ αci (mod n),

and sends the values Ai and Ci to the user Ui using
a secure channel.

3) The private key of Ui is the set (Ai, bi, Ci, di). Note
that T can determine ai and ci since it knows h, k, αbi ,
and αdi , but it can compute neither bi nor di because it
cannot solve the SDLP. Similarly, Ui cannot compute
the values ai and ci. As a consequence, both T and Ui

have access to only two out of the four user’s secret
key parameters.

2.3 Parameter and key verification
Each member of the signer group, Ui, 1 ≤ i ≤ t, may

check the validity of the system parameters by verifying that
α �≡ 1 (mod n) and αr ≡ 1 (mod n).

Then, each signer, Ui, 1 ≤ i ≤ t can verify that their
private key is related to the shared public key, by checking

P ≡ Ai · βbi (mod n), Q ≡ Ci · βdi · βdi (mod n). (1)

This verification works because of the following chain of
equivalences:

Ai · βbi ≡ αai · βbi ≡ αai+s·bi ≡ αh ≡ P (mod n),
Ci · βdi ≡ αci · βdi ≡ αci+s·di ≡ αk ≡ Q (mod n).



2.4 Multisignature generation
Let M be the message to be signed by a member of G.

By using, for example, a public hash function of the SHA-2
family [18], either the signing user or T compute h(M) =
m, where m represents the hash output.

In this contribution we have modified the scheme orig-
inally proposed in [15] so, given the set of signing users
G = {U1, U2, . . . , Ut}, they can complete the signature in
any order, which reflects better the reality of organizations
and the potential temporary (un)availability of the members
of G. In order to generate the multisignature, the following
steps must be completed:

1) The first signer, Uj , 1 ≤ j ≤ t, must obtain the values
Fj and gj that compose his partial signature in the
following way:

Fj ≡ Aj · Cm
j (mod n),

gj ≡ bj +m · dj (mod r).
(2)

Then, Uj sends the partial signature (Fj , gj) to the
next signer, Uk, 1 ≤ k ≤ t, k �= j.

2) The second signer, Uk, verifies Uj’s signature by
checking if the following equivalence holds:

P ·Qm ≡ Fj · βgj (mod n).

If that is the case, Uk computes his partial signature
for the message in the following way:

Fk ≡ Fj ·Ak · Cm
k (mod n)

≡ αaj+ak+m(cj+ck) (mod n),
gk ≡ gj + bk +m · dk (mod r)

≡ bj + bk +m(dj + dk) (mod r).

(3)

3) Then, Uk sends the partial signature (Fk, gk) to the
next signer, Ul, 1 ≤ l ≤ t, l �= j, k, and the procedure
is repeated until all the group members have signed
the message. The signature computed by the last user
represents the multisignature for M , denoted as (F, g).

2.5 Multisignature verification
Any verifier knowing the message, M , the hash function,

h, the public key of the group G, (P,Q), the number of
members of the group, t, and the group signature, (F, g),
can check if the signature is valid through the following
computation:

P t ·Qtm ≡ F · βg (mod n). (4)

Equation (4) can be justified from expressions (1)–(3):

F · βg (mod n) ≡
≡ αa1+···+at+m(c1+···+ct)βb1+···+bt+m(d1+···+dt)

≡
t∏

j=1

αaj · βbj
(
αcj · βdj

)m
(mod n)

≡
t∏

j=1

P ·Qm = P t ·Qt·m (mod n).

3. Java implementation of the scheme
The multisignature scheme presented in this contribution

has been implemented as a Java application using Java SE
8. The application is composed of three panels which are
described in detail in the next subsections. In each panel,
the application user has the option of converting the data
from decimal (or text, in the case of the message to be sign)
to hexadecimal and vice versa.

In all the cases where a random number is needed, the
application uses the standard Java classes BigInteger
[19] and Random [20], so the requested number is obtained
through the following code:

Random random = new Random();

BigInteger number =
new BigInteger(numBits,random);

In the previous code, the element numBits indicates
that the desired number must be uniformly distributed over
the range 0 to 2numBits − 1. Regarding the Random
class, it uses a 48-bit seed which is modified using a linear
congruential formula according to the method described in
Section 3.2.1 of [21].

Whenever a random prime number is needed, the follow-
ing code is used after obtaining a random number:

BigInteger prime =
number.nextProbablePrime();

By calling the method nextProbablePrime() over
the element number, the application obtains the first integer
greater than number that is probably prime, where the
probability that the number returned is composite does not
exceed 2−100 [19].

Rearding the process of checking if a given
value is a prime number, we have used the method
isProbablePrime(int certainty) implemented
by the BigInteger class, where certainty represents
the measure of uncertainty tolerated by the method: if the
call returns true the probability that the BigInteger
element is prime exceeds (1− (1/2)certainty) [19], [22].
If the bit length of the number to be analysed is less than
100, the function makes 50 passes of the Miller-Rabin test
[23]. On the other hand, if the bit length is higher, it makes
a variable number of passes of the Miller-Rabin test (the
precise number depends on the actual bit length: 27 for
numbers with less than 256 bits, 15 for numbers with less
than 512 bits, 8 for numbers with less than 768 bits, 4
for numbers with less than 1024 bits, and 2 for numbers
having at least 1024 bits), but in addition to that it runs the
Lucas-Lehmer test [23]. An example code would be the
following:

boolean isprime =
number.isProbablePrime(10);



3.1 Parameters panel
This panel includes the general parameters, T ’s private

key and the group’s public key, as it can be seen in Figure 1.
More specifically, it includes text boxes for the private
elements p, q, s, a0, b0, c0, and d0, and for the public
elements n, r, α, β, P , and Q.

Fig. 1: Parameters pannel

There are four buttons available in this panel:
• Generate: It computes all the parameters according to

the steps 1-7 of the procedure described in §2.1.
• Save: It allows the user to save either the public data

or all the data included in this panel. The information
is stored in a file using an XML structure.

• Load: It allows the user to overwrite the data existing in
the text boxes with the information stored in the XML
file selected by the user.

• Clear: It deletes the content of all the text boxes
pertaining to this panel.

3.2 Users panel
This panel includes the private keys of the four users

managed by this application. It is important to point out
that the number of users implemented in this version of the
application is not a limitation of the scheme, but a figure
selected in order to simplify the usage of the application.

For each user from i = 1 to 4, a set consisting of the
associated values Ai, bi, Ci, and di is displayed, as it can
be seen in Figure 2. We remind the reader that the values bi
and di are known only to Ui, while only T knows the value
of the elements ai and ci.

The four buttons available in this panel implement the
following functionality:

Fig. 2: Users panel.

• Generate: It generates all the private elements associ-
ated to the private keys of the users according to the
steps 1 and 2 of the procedure described in §2.2.

• Save: It allows the user to save the private elements of
the four users in a file using an XML structure.

• Load: It allows to overwrite the data existing in the
text boxes with the information stored in the XML file
selected by the user.

• Clear: It deletes the content of all the text boxes
displayed in this panel.

3.3 Operations panel
This panel includes the operational functionality that can

be accessed through the following buttons, as displayed in
Figure 3:

• Generate: It generates the multisignature of the text
message provided manually by the user according to
the steps 1-3 described in §2.4. In order to obtain the
elements F and g associated to the signature, it is
mandatory to select in the panel the hash function and
the starting signing user.

• Order: By selecting this button, the application changes
the order of the users randomly, with the condition that
the new order must be different from the previous one.
Once a specific order is displayed, the user can select
the starting signer by checking the proper element.

• Verify: It allows to verify if the multisignature provided
by the user corresponds to the text message entered in
its text box, as described in Section 2.5.

• Clear: It deletes the content of all the text boxes
displayed in this panel.



Fig. 3: Operations panel.

4. Numerical example
This section provides the details of the signature process

depicted in Figures 1, 2, and 3, where the selected bit length
for the base elements r, p1, q1, v1, and v2 is 32. This bit
length is clearly inadequate from a security perspective, but
making this choice allows us to manage smaller numbers in
order to facilitate the comprehension of the example.

After selecting the option Generate, the application ran-
domly produces the prime values r = 707878597, p1 =
3641604649, and q1 = 303316411. Then, the application
enters a loop where it randomly generates the prime val-
ues v1 and v2 and computes p and q, exiting the loop
once it checks that the values p and q are both prime
numbers. In the example, the first values that satisfy that
condition are v1 = 1371067121, and v2 = 2037689777,
producing p = 7068712010835204353581685627 and q =
875029616016036929837566319, which can be represented
using 93 and 90 bits, respectively.

Then, after computing φ(n) = 61853323565690771433
55837092787998219291465096002345068 (a 183-bit num-
ber), λ(n) = 4368921721028582775017731672418397910
179692222, and the 62 non-trivial divisors of λ(n), the
application enters a loop for computing a generator α such
that it is coprime with φ(n). In the example, the generator
thus calculated is α = 247611118429251150494739954293
2050141655208543484356759.

Next, the application randomly generates the value s =
132833609, which must be coprime with r. Using α and s,
the application computes β = 548107099436171896517067
2738086133633860142334550011172.

After that, it randomly generates the elements of the

T ’s private key (a0 = 259413166, b0 = 44334594, c0 =
463536166, and d0 = 564483177) and computes the ele-
ments of the public key (P = 896660984766583039450745
581339862875767663578830466824 and Q = 5519075529
713604994221069894514764078332336401614197009).

As for the private keys of the signing users, in the
example the application generates the following values:
a1 = 85535838115036836980952812842601449243466753
3329728158, b1 = 580306758, c1 = 536083405315616803
5885227183297024277322889779720288937, d1 = 168101
611, a2 = 5191790223815826617172757099624147117707
471756281314194, b2 = 301797980, c2 = 4717546066954
142545076932845518352201627263956367193101, d2 = 1
29578623, a3 = 6171876475170961706854188816590741
717055026225567440684, b3 = 363218280, c3 = 5971059
634508658526639512341877023055326781019098713245,
d3 = 297227851, a4 = 39918217121001085196288551326
93742599660528974500745873, b4 = 376378278, c4 = 64
575037973744622649123747351681703599023525554705
0975, and d4 = 379401837.

Given the example message (the quote “The price of
freedom is eternal vigilance”) and the selected hash function
(SHA-256), before computing the multisignature the applica-
tion calculates the message’s digest, whose representation in
hexadecimal is 09917EFCA9E63C6BE3F5710D4E146
146A152B64CE2E1DCDBBAAC3F6EBD6E19F1. When
considered as an integer modulo r, the value associated to
the message is 70616700.

In the example, after using the Order button the dis-
tribution of signing users obtained is 4-2-3-1. If we se-
lect User 4 as the starting signer (see Figure 3), the
elements forming the subsequent signatures calculated by
the application are the following: F4 = 503576816705
5077718477864679949082104696821277077281113, g4 =
26792106079256178, F2 = 27467342228456975614609
78062345247914787770187195849232, g2 = 359425211
27858258, F3 = 54924708110374444922151830766592
34465569196156819515847, g3 = 56931771476788238,
F1 = 17003129136319818582187842135530955455239328
15065546746, and g1 = 68802553090598696. The multisig-
nature resulting from this process is the signature computed
by the last user, so (F, g) = (F1, g1).

If, given the initial distribution 4-2-3-1, we had se-
lected User 3 has the starting signer (see detail in
Figure 4), the signatures calculated by the application
would contain the elements F3 = 1525558802257083
259276411227735843971228217026108102837, g3 = 2
0989250348929980, F1 = 426674824760343430582301
1807817369532998324145115483942, g1 = 328600319
62740438, F4 = 52696824638912118121095969992077
68861301755362219881607, g4 = 59652138041996616,
F2 = 1700312913631981858218784213553095545523932
815065546746, and g2 = 68802553090598696, where the
resulting multisignature is (F, g) = (F2, g2). As it can



be observed, the multisignature obtained is the same, as
the order does not affect its final result, even though the
partial signatures are different in each case. The same
multisignature (F, g) would be produced if, for example,
the initial distribution of users had been 1-2-3-4 and we had
selected any of the four users as the starting signer.

Fig. 4: Signature generation example.

5. Experimental results
The tests whose results are presented in this section were

completed using a PC with Windows 7 Professional OS and
an Intel Core i7 processor at 3.40 GHz.

Table 1 includes the running time obtained when exe-
cuting the general parameters generation procedure in the
testing computer with the bit lengths indicated in each case,
where the bit length represents the maximum length in bits of
the parameters r, p1, q1, v1, and v2. The time displayed for
each bit length represents the average time of the generation
of 100 sets of parameters.

As expected, the running time has an exponential shape,
as it can be seen in Figure 5.

Fig. 5: General parameters’ generation running time

Most of the parameter generation running time is due
to the operations with prime numbers and BigInteger
elements: obtaining the first prime number bigger than
a certain value (method nextProbablePrime()) and

checking if a candidate value is a prime number (method
isProbablePrime()). Table 2 shows the average num-
ber of executions of the pieces of code calling those methods.

Figures 6 and 7 show graphically the information con-
tained in Table 2. The main reason for the increase in
the execution time in now clear: not only the appli-
cation spends more time in each call to the methods
nextProbablePrime() and isProbablePrime(),
as a result of dealing with bigger numbers, but it also needs
to call those methods more times, as the probability of
p = u1rp1 + 1 and q = u2rq1 + 1 being prime numbers
is lower as the bit length of those numbers increase.

Fig. 6: Number of calls to the method
nextProbablePrime()

Fig. 7: Number of calls to the method
isProbablePrime()



Table 1: General parameters generation running time
Length (bits) 32 64 96 128 160 192
Time (seconds) 0.37 6.06 21.03 56.70 160.11 312.36

Table 2: Number of calls to some methods implementd by the BigInteger class
Length (bits) 32 64 96 128 160 192
nextProbablePrime() 4,583.88 23,370.20 42,538.68 63,448.86 118,089.20 157,435.14
isProbablePrime() 2,337.15 11,802.72 21,416.38 31,883.81 59,279.56 78,977.87

6. Conclusions
In this contribution we have presented a modification

of the multisignature scheme described in [15]. In order
to implement the scheme as a Java application, we have
modified the scheme by adding a new requirement which
mandates v1 and v2 to be both prime numbers, as explained
in §2.1. With this modification, we force the number of non-
trivial divisors of λ(n) to be exactly 62, which facilitates
the implementation in devices with limited resources as the
application does not need to factor v1 and v2 in order to
determine the actual number of non-trivial divisors of λ(n).
In addition to that, we have modified the scheme so the
members of the group can sign a certain message in any
given order.

The tests performed with the application allow us to
confirm the expected difficulty in generating the system pa-
rameters for bit lengths greater than 64 bits. Nevertheless, as
the system parameters generation procedure is only executed
once by the Trusted Third Party, it is not a limitation for
implementing this multisignature scheme in other devices
that most of the times will only perform the signature
generation and verification procedures.

Acknowledgment
This work has been partially supported by Comunidad

de Madrid (Spain) under the project S2013/ICE-3095-CM
(CIBERDINE).

References
[1] N. K. Itakura, K., “A public-key cryptosystem suitable for digital

multisignatures,” NEC Research & Development, vol. 71, pp. 1–8,
1983.

[2] T. Okamoto, “A digital multisignature scheme using bijective public-
key cryptosystems,” ACM Transactions on Computer Systems, vol. 6,
no. 4, pp. 432–441, 1988.

[3] A.-F. M. Aboud, S.J., “A new multisignature scheme using re-
encryption technique,” Journal of Applied Sciences, vol. 7, pp. 1813–
1817, 2007.

[4] K.-T. Harn, L., “New scheme for digital multisignature,” Electronics
Letters, vol. 25, pp. 1002–1003, 1989.

[5] H.-L. Kiesler, T., “Rsa blocking and multisignature schemes with no
bit expansion,” Electronics Letters, vol. 26, pp. 1490–1491, 1990.

[6] P.-S. K. K. W. D. Park, S., “Two efficient RSA multisignature
schemes,” Lecture Notes in Computer Science, vol. 1334, pp. 217–
222, 1997.

[7] L.-E. L. J. Pon, S.F., “Dynamic reblocking RSA-based multisignatures
scheme for computer and communication networks,” IEEE Commu-
nications Letters, vol. 6, no. 1, pp. 43–44, 2002.

[8] Y.-S. Laih, C.S., “Multisignature for specified group of verifiers,”
Journal of Information Science and Engineering, vol. 12, no. 1, pp.
143–152, 1996.

[9] W. He, “Weakness in some multisignature schemes for specified group
of verifiers,” Information Processing Letters, vol. 83, no. 2, pp. 95–99,
2002.

[10] S. Yen, “Cryptanalysis and repair of the multi-verifier signature with
verifier specification,” Computers & Security, vol. 15, no. 6, pp. 537–
544, 1996.

[11] X.-G. Zhang, Z., “New multisignature scheme for specified group of
verifiers,” Applied Mathematics and Computation, vol. 157, pp. 425–
431, 2004.

[12] W.-X. K. K. Lv, J., “Security of a multisignature scheme for specified
group of verifiers,” Applied Mathematics and Computation, vol. 166,
pp. 58–63, 2005.

[13] Y.-K. Yoon, E.J., “Cryptanalysis of zhang-xiao’s multisignature
scheme for specified group of verifiers,” Applied Mathematics and
Computation, vol. 170, pp. 226–229, 2005.

[14] N.-G. Bellare, M., “Multi-signatures in the plain public-key model
and a general forking lemma,” in 13th ACM conference on Computer
and Communications Security (CCS’06), 2006, pp. 390–399.

[15] R. Durán Díaz, L. Hernández Encinas, and J. Muñoz Masqué, “A
multisignature scheme based on the sdlp and on the ifp,” Lecture
Notes in Computer Science, vol. 6694, pp. 135–142, 2011.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. Boca Raton, FL, USA: CRC Press, Inc.,
1996.

[17] W. Susilo, “Short fail-stop signature scheme based on factorization
and discrete logarithm assumptions,” Theoretical Computer Science,
vol. 410.

[18] NIST, Secure Hash Standard, National Institute of Standard and
Technology, Federal Information Processing Standard Publication,
FIPS 180-4, 2012.

[19] Oracle Corporation, BigInteger (Java Platform SE 8), http://docs.
oracle.com/javase/8/docs/api/java/math/BigInteger.html, 2014.

[20] ——, Random (Java Platform SE 8), http://docs.oracle.com/javase/8/
docs/api/java/util/Random.html, 2014.

[21] D. E. Knuth, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

[22] Oracle Corporation, OpenJDK - jdk8 - BigInteger.java),
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/00cd9dc3c2b5/src/share/
classes/java/math/BigInteger.java, 2015.

[23] R. E. Crandall and C. Pomerance, Prime Numbers: A computational
perspective. Springer, New York, USA: Springer, 2005.


